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2- Nise, N. S. “Control System Engineering”, 7th edition, John Wiley & Sons Ltd., UK, 2016.
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2017.
4- Andrea Bacciotti, “Stability and Control of Linear Systems” Volume 185, Springer, 2019.
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➢ Compensation in control systems, lead, lag, and lead-lag phase 

compensation in frequency domain,

➢ State model of linear systems using physical variables, state space 

representation using phase variables, state space representation, 

using canonical variables, properties of transition matrix and 

solution of state equation,

➢ Poles, zeros, eigen values and stability in multivariable system,

➢ Introduction to nonlinear control systems, describing function 

method, nature and stability of limit cycle.
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A transfer function is called minimum phase when all the poles and zeroes 
are LHP and non-minimum-phase when there are RHP poles or zeroes. 

Minimum phase system Stable 

The gain margin (GM) is the distance on the bode magnitude plot 
from the amplitude at the phase crossover frequency up to the 0 
dB point.  GM=-(dB of GH measured at the phase crossover 
frequency)

The phase margin (PM) is the distance from -180 up to the phase 
at the gain crossover frequency.  PM=180+phase of GH measured 
at the gain crossover frequency

Relative Stability



Open loop transfer function :

Closed-loop transfer function :
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Relative stability (Gain and Phase Margins)

▪ A transfer function is called minimum phase when all the
poles and zeros are LHP and non-minimum-phase when
there are RHP poles or zeros.

▪ The phase margin (PM): is that amount of additional
phase lag at the gain cross over frequency required to
bring the system to the verge of instability.

𝑃𝑀=180+[phase of GH measured at the gain crossover frequency (0 𝑑𝐵)]
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The gain margin (GM):is the reciprocal of the magnitude
|G(jw)| at the frequency at which the phase angle is:

𝐺𝑀=0 − [𝑑𝐵 𝑜𝑓 𝐺𝐻 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (− 180)]

➢ Open loop transfer function: G(s)H(s)

➢ Closed-loop transfer function: 1 + G(s)H(s)

➢ Open loop Stability poles of G(s) H(s) in LHP

➢ Closed-loop Stability poles of G(s) H(s) in left

side of (-1,0)
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▪ The gain margin indicates the system gain can be
increased by a factor of GM before the stability
boundary is reached.

▪ The phase margin is the amount of phase shift of the
system at unity magnitude that will result in stability. 14



Example
▪ For the system shown, determine:

➢ the gain margin.

➢ phase margin.

➢ phase-crossover frequency.

➢ gain-crossover frequency.
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Solution
▪ The Bode plot for this system is shown in figure

▪ The gain margin= 9.929 and the phase margin=103.7
degree.
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Bandwidth and Cutoff Frequency

17



Using Matlab For Frequency Response

▪ Instruction: We can use Matlab to run the frequency
response for the previous example. We place the
transfer function in the form:

▪ The Matlab Program
>> num= [5000 50000];

>> den = [1 501 500];

>> Bode (num,den)

18



Relationship between 
System Type & Log-Magnitude Curve

▪ Consider the unity-feedback control system. The
static position, velocity, and acceleration error
constants describe the low-frequency behavior of
type 0,type 1, and type 2 systems, respectively.

▪ For a given system, only one of the static error
constants is finite and significant.

▪ The type of the system determines the slope of the
log-magnitude curve at low frequencies.

19



▪ Thus, information concerning the existence and
magnitude of the steady-state error of a control
system to a given input can be determined from the
observation of the low-frequency region of the log-
magnitude curve.
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Determination of Static Position 
Error Constants.

▪ Consider the type-0 unity feedback control system,

21



▪ Consider the type-1unity feedback control system,

22



▪ Consider the type-2 unity feedback control system,
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Straight-line approximations of the Bode plot may be
drawn quickly from knowing the poles and zeroes
response approaches a minimum near the zeroes

response approaches a maximum near the poles

The overall effect of constant, zero and pole terms

Term Magnitude 
Break 

Asymptotic 
Magnitude Slope 

Asymptotic 
Phase Shift 

Constant (K) N/A 0 0 

Zero upward +20 dB/decade + 90 

Pole downward –20 dB/decade – 90 

 



Express the transfer function in standard form

There are four different factors:
Constant gain term, K

Poles or zeroes at the origin, (j)±N

Poles or zeroes of the form (1+ j)

Quadratic poles or zeroes of the form 1+2(j)+(j)2
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We can combine the constant gain term (K) and the N
pole(s) or zero(s) at the origin such that the 
magnitude crosses 0 dB at

Define the break frequency to be at ω=1/ with 
magnitude at ±3 dB and phase at ±45°

N
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Magnitude Behavior Phase Behavior  

Factor Low 
Freq 

Break Asymptotic Low 
Freq 

Break Asymptotic 

Constant 20 log10(K) for all frequencies 0 for all frequencies 

Poles or 
zeros at origin 

±20N dB/decade for all 
frequencies with a crossover of 

0 dB at ω=1 

±90(N) for all frequencies 

First order 
(simple) poles 
or zeros 

0 dB ±3N dB 

at ω=1/ 

±20N 
dB/decade 

0 ±45(N) with 

slope ±45(N) 
per decade 

±90(N) 

Quadratic 
poles or zeros 

0 dB see ζ at 

ω=1/ 

±40N 
dB/decade 

0 ±90(N) ±180(N) 

 

where N is the number of roots of value τ



Single Pole & Zero Bode Plots
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Further refinement of the magnitude
characteristic for first order poles and zeros
is possible since
Magnitude at half break frequency: |H(½b)| =

±1 dB

Magnitude at break frequency: |H(b)| = ±3 dB

Magnitude at twice break frequency: |H(2b)| =
±7 dB

Second order poles (and zeros) require that the
damping ratio ( value) be taken into account;
see Fig. 9-30 in textbook



We can also take the Bode plot and extract
the transfer function from it (although in
reality there will be error associated with
our extracting information from the
graph)

First, determine the constant gain factor, K

Next, move from lowest to highest
frequency noting the appearance and order
of the poles and zeros



Frequency Response Plots

Bode Plots – Real Poles (Graphical Construction)



Frequency Response Plots

Bode Plots – Real Poles



Frequency Response Plots

Bode Plots – Real Poles



Gain and Phase Margin 

Let's say that we have the following system: 

where K is a variable (constant) gain and G(s) is the plant under consideration. 

The gain margin is defined as the change in open loop gain required to 
make the system unstable. Systems with greater gain margins can 
withstand greater changes in system parameters before becoming 
unstable in closed loop.  Keep in mind that unity gain in magnitude is 
equal to a gain of zero in dB

The phase margin is defined as the change in open loop phase shift 
required to make a closed loop system unstable. 

The phase margin is the difference in phase between the phase curve 
and -180 deg at the point corresponding to the frequency that gives us 
a gain of 0dB (the gain cross over frequency, Wgc). 

Likewise, the gain margin is the difference between the magnitude 
curve and 0dB at the point corresponding to the frequency that gives 
us a phase of -180 deg (the phase cross over frequency, Wpc).



Gain and Phase Margin 

-180



Examples - Bode
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Examples – Bode



Magnitude Bode plot of 0.1
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EXAMPLE
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Calculate 20log10 |H(jω)| at ω=50 rad/s and ω=1000 rad/s

0

10 10

0

10 10

0.11( 50)
( 50) 0.9648 -15.25

(1 5)(1 0.5)

20log ( 50) 20log (0.9648) 0.311 dB

0.11( 1000)
( 1000) 0.1094 83.72

(1 100)(1 10)

20log ( 1000) 20log (0.1094) 19.22 dB

j
H j

j j

H j

j
H j

j j

H j
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Using the Bode diagram, calculate the amplitude of vo if 
vi(t)=5cos(500t+150)V.

From the Bode diagram, the value of AdB at ω=500 rad/s 
is approximately -12.5 dB. Therefore,

( 12.5/20)
10 0.24A

−= =

(0.24)(5) 1.2mo miV AV V= = =



MORE ACCURATE AMPLITUDE 
PLOTS

The straight-line plots for first-order poles and zeros can be
made more accurate by correcting the amplitude values at the
corner frequency, one half the corner frequency, and twice
the corner frequency. The actual decibel values at these
frequencies

/2

2

10 10

10 10

10 10

20log 1 1 20log 2 3 dB

20log 1 1 / 2 20log 5 / 4 1 dB

20log 1 2 20log 5 7dB
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c
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In these equations, + sign corresponds to a first-order 
zero, and – sign is for a first-order pole.





STRAIGHT-LINE PHASE ANGLE PLOTS

1. The phase angle for constant Ko is zero.

2. The phase angle for a first-order zero or pole at the
origin is a constant ± 900.

3. For a first-order zero or pole not at the origin,

• For frequencies less than one tenth the corner
frequency, the phase angle is assumed to be zero.

• For frequencies greater than 10 times the corner
frequency, the phase angle is assumed to be ±

900.

• Between these frequencies the plot is a straight
line that goes from 00 to ± 900 with a slope of ±

450/decade.





EXAMPLE
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Compute the phase angle θ(ω) at ω=50, 500, and 
1000 rad/s.

0 0

0 0

0 0

( 50) 0.96 15.25 ( 50) 15.25

( 500) 0.22 77.54 ( 500) 77.54

( 1000) 0.11 83.72 ( 1000) 83.72

H j j

H j j

H j j
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

=  −  = −

=  −  = −

=  −  = −

Compute the steady-state output voltage if the source 
voltage is given by vi(t)=10cos(500t-250) V.

0 0 0

0

( 500) (0.22)(10) 2.2

( ) 77.54 25 102.54

( ) 2.2cos(500 102.54 )

mo mi

o i

o

V H j V V

v t t V
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PHASE ANGLE PLOTS

For a second-order zero or pole not at the origin,
For frequencies less than one tenth the corner frequency,

the phase angle is assumed to be zero.
• For frequencies greater than 10 times the corner

frequency, the phase angle is assumed to be ± 1800.

• Between these frequencies the plot is a straight line
that goes from 00 to ± 1800 with a slope of ±

900/decade.
As in the case of the amplitude plot, ζ is important in

determining the exact shape of the phase angle plot.
For small values of ζ , the phase angle changes
rapidly in the vicinity of the corner frequency.





ζ=0.1

ζ=0.3

ζ=0.70
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EXAMPLE
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From the straight-line plot, this circuit acts as a low-pass
filter. At the cutoff frequency, the amplitude of H(jω) is 3 dB
less than the amplitude in the passband. From the plot, the
cutoff frecuency is predicted approximately as 13 rad/s.

To solve the actual cutoff frequency, follow the procedure as:
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From the phase plot, the phase angle at the cutoff
frequency is estimated to be -650.

The exact phase angle at the cutoff frequency can be
calculated as

2

1 1 2 0

4( 16 25)
( 16)

( 16) 4( 16) 100

( 16) tan (16 / 25) tan (64 / (100 16 )) 125

j
H j

j j

j − −

+
=

+ +

= − − = −

Note the large error in the predicted error. In general, straight-
line phase angle plots do not give satisfactory results in the
frequency band where the phase angle is changing.
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